Biosynthesis of carotenoids derived from neurosporene in Rhodopseudomonas capsulata.
نویسندگان
چکیده
We have characterized the carotenoids accumulated by a series of mutants of Rhodopseudomonas capsulata as part of a study of the synthesis, structure, and function of the photosynthetic membranes of this bacterium. The carotenoids in this study were identified by visible and mass spectroscopy, chromatography, derivatization, and chemical analyses. We have located a new genetic region, crtF, necessary for the O-methylation of the carotenoids. Mutants with a lesion in crtF accumulate demethylspheroidene as their major carotenoid during anaerobic growth and demethylspheroidenone when grown in the presence of oxygen, a heretofore undescribed phenotype. The genetic region necessary for O-methylation maps adjacent to the known cluster of genes affecting carotenoid biosynthesis. In addition, we have identified methoxyneurosporene as the carotenoid that preferentially binds to the reaction centers of strain Ga, a green mutant of R. sphaeroides which accumulates three neurosporene-like carotenoids. A metabolic grid for carotenoid biosynthesis is proposed, based upon the intermediates accumulated in these mutants.
منابع مشابه
Oxygen does not directly regulate carotenoid biosynthesis in Rhodopseudomonas capsulata.
We examined the role of bacteriochlorophyll synthesis on the regulation of carotenoid synthesis in Rhodopseudomonas capsulata. Strains capable of making bacteriochlorophyll accumulated greater amounts of carotenoids under low oxygen than they did under high oxygen. However, strains unable to produce bacteriochlorophyll did not regulate their carotenoid production in response to changes in oxyge...
متن کاملThe gene crtI mediates the conversion of phytoene into colored carotenoids in Rhodopseudomonas capsulata.
Carotenoids are membrane pigments present in all photosynthetic organisms, providing essential photoprotective functions. The first carotenoid formed in the pathway is phytoene, a colorless compound which is then converted into colored carotenoids by a series of dehydrogenation reactions. In the photosynthetic bacterium Rhodopseudomonas capsulata mutations that affect carotenoid biosynthesis be...
متن کاملRecent Studies of Carotenoid Biosynthesis
The effects of nicotine on carotenoid biosynthesis have been investigated in a non-photosynthetic Flavobacterium strain 0147, and in two photosynthetic bacteria, Rhodopseudomonas spheroides and Rhodomicrobium vanrtielii. In Flavobacterium, nicotine inhibits the synthesis of the nOrmal main carotenoid, zeaxanthin, and causes an accumulation of lycopene at high nicotine concentration, and rubixan...
متن کاملLinear and circular dichroism of membranes from Rhodopseudomonas capsulata.
Absorption, linear dichroism and circular dichroism spectra of Rhodopseudomonas capsulata (wild-type-St. Louis strain, mutant Y5 and mutant Ala+) are particularly sensitive to the nature of the light-harvesting bacteriochlorophyll-carotenoid-protein complexes. Evidence for exciton-type interactions is seen near 855 nm in the membranes from the wild-type and from mutant Y5, as well as in an isol...
متن کاملStructural studies on bacterial carotenoids and their biosynthetic implications.
Detailed studies of the properties of carotenoids isolated from diphenylamine-inhibited cultures of Rhodospirillum rubrum have revealed a number of novel structures which indicate new features of carotenoid biosynthesis in the photosynthetic bacteria. The dehydrogenation of phytoene to coloured carotenoids occurs by a sequence which is different from that in higher plants in that 7,8,11,12-tetr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 255 6 شماره
صفحات -
تاریخ انتشار 1980